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ABSTRACT. Two difierent concepts of distinguishability are often mixed up in attempts
to derive in quantum mechanics the (anti)symmetry of the wave function from indis-
tinguishability of identical particles. some of these attempts are analyzed and shown to be
defective. It is argued that, although identical particles should be considered as
observationally indistinguishable in (anti)symmetric states, they may be considered to be
conceptually distinguishable. These two notions of (in)distinguishabitity have quite
different physical origins, the former one being related to observations while the latter has
to do with the preparation of the system.

1 .  r N r n o o u c r r o N

In the elementary wave function formulation of quantum mechanics a
system of identical particles (SIP) is required to have a wave function
that is either totally symmetric or totally anti-symmetric under a
permutation of the particle variables,

( 1 )  V ( P ( x 1 , . . . , r , ) ) : * V ( x r ,  . . . , x n ) .

This (anti)symmetry (AS) requirement is often introduced as a postulate
(Dirac, 1958; Schiff, 1955; Messiah, 1958) but it is sometimes thought
to be derivable from the indistinguishability (ID) of the identical
particles (Landau and Lifshitz, 1959 Blokhintsev, 1964). The reason-
ing corresponding to this line of thought, is as follows: since the
particles are indistinguishable, a permutation of the particles cannot
have observable consequences. Therefore, the expectation values of
any observable /(x1, . . ., xn) should be the same in states V(x1, . . ., .r")
and {r(P(xr, . . . , rn)). From this it is concluded that the equality

( 2 )  V ( P ( x r , . . . , r " ) ) : c V ( x 1 ,  . . . , x n ) , l r l : 1 ,

should be valid. This implies one-dimensionality of the representations
of the permutation group. Since only the symmetric and the anti-
symmetric representations of the permutation group are one-dimen-
sional, ID entails AS, if this derivation is applicable.

From several directions objections have been raised (Messiah and
Greenberg, 1964; Hestenes, 1970; de Muynck, 1,975) against this
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derivation of AS from ID. Thus, by Messiah and Greenberg (1964) it is
shown that AS is stronger than ID. So, additional assumptions, besides
ID, must be used in a derivation of AS. Hestenes (1970), in discussing
the Gibbs paradox, stresses the conceptual difference of ID and AS.
Finally, by de Muynck (1975) both these arguments are combined, thus
exhibiting the nature of the additional assumptions mentioned above.

Since that t ime there have been several discussions (Kaplan, 1976;
Sarry, 1979; Shadmi, 1978) of the relation between AS and ID, two of
these discussions (Kaplan,7976; Sarry, 1979) being renewed attempts
to derive AS from ID. My purpose here is to analyse these derivations
and demonstrate their defectiveness. This will be done in sections 7-9.
Since this analysis is dependent on our understanding of the notion of
(in)distinguishabil ity, we wil l f irst give a discussion of this concept.

2 .  r w o  K I N D S  o F  D r s r r N G U r s H A B I L t r y

It is necessary, in order to arrive at a better understanding of lD, to
draw a distinction between two different concepts of distinguishability,
viz., conceptual distinguishability (CD) and obsensaticsnal dis-
tinguishability (OD). We will refer to two physical entities as concep-
tually distinguishable whenever it is possible to provide each with a
label or name by which it can be represented in the theoretical
description. We will refer to two physical entities as observationally
distinguishable if a physical exchange of the entities leads to a state that
is observationally different, that is, if we have at our disposal a
measurement procedure of at least one observable having different
expectation values in the two states.

From an empiricist's point of view it might seem that only the second
mode of distinguishability makes sense, because the label would not
have any observable meaning if a physical exchange resulted in a state
that is observationally the same. However, as is well known since the
days of Hume, physics transcends empiricism in attributing the property
of substance to the set of phenomena that can be interpreted as the
occurrence of a particle. This idea of substance is the expression of our
belief that the particle has some permanence, and therefore a certain
individuality which is kept throughout the observed process. It is this
idea of substance that makes it possible to interpret the solution of
Newton's equation as describing the motion of one and the same
particle, to be marked by one single label during the whole process.



I N D I S T I N G U I S H A B I L I T Y  A N D  ( A N T I ) S Y M M E T R Y  4 7 9

Conceptual distinguishability of particles is just an extension of this idea

to systems of more than one particle. By Shadmi (1978) indis-

tinguishability of particles is brought into relation with Leibniz's

principle of the "identity of the indiscernibles". This seems to make

sense if "indiscernible" is equated to "conceptually indistinguishable":
if it is impossible to distinguish two entities by means of any label, they

should be identified. However, as was noted already by Margenau
(1944), Leibniz's principle has no bearing on the notion of obser-

vational indistinguishability (OID): even if we do not label the two

particles, it is easily demonstrated that a system of two particles is

observationally different from a one-particle system; this can be done

by simply counting the particles. Therefore, OID is no reason for

identification of the particles.
CD is not only a presupposition of classical mechanics, but also

of quantum mechanics. In the n-particle wave function

V(x r , . . . , r i , . . . ,Xn )  t he  symbo l  . x i  r ep resen ts  t he  pos i t i on  o f  t he  i t h
particle. Clearly, it is a presupposition of the wave function formalism

that each particle is labeled by means oI an index. This kind of labeling,

moreover, is presupposed both for nonidentical and for identical
particles.

OD without CD would have the paradoxical consequence that two

states differing only by an exchange of two particles could only be

described by the same theoretical entity, and yet would be obser-

vationally different. For this reason CD is necessary for OD: the label

should be there in order to be observable. However, CD is not

sufficient. In order to be observationally distinguishable the particles

should have labels that actually are observable. As was noted by

Hestenes (1970), the meaning of observational (in)distinguishability is

determined by the nature of the experiments which can be performed
on the system. If there do not exist experimental means to observe the
particle labels, the particles are observationally indistinguishable, even
if they are conceptually distinguishable.

3 .  T o  T N  C L A S S I C A L  A N D  I N  Q U A N T U M  M E C H A N I C S

It is often asserted (e.g., Jauch, 1966) that indistinguishability of
identical particles is a typically quantum mechanical property, classical
particles being distinguishable by their trajectories. Since quantum
mechanical particles do not have trajectories, this might even be used
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as an argument against the possibility of labeling particles in quantum
mechanics, and therefore against conceptual distinguishability of iden-
tical particles. If the positions of all n identical particles are measured
on two consecutive moments, quantum mechanics does not offer any
warrant that a physical exchange of particles between the two
measurements has not taken place. For identical particles this would
look like an exchange of labels between the particles. This would entail
the unsuitability of a label as an expression of a permanent individuality
of a particle.

As was stated before, classical as well as quantum mechanics start
from the presupposition that a particle can be labeled by means of a
particle index, also in case the particles are identical. In the case of
nonidentical particles this does not pose any conceptual problems in
quantum mechanics. In our opinion, the situation is quite analogous in
the case of identical particles. It would seem rather strange if a particle
would lose its individuality as soon as a particle of the same type would
enter its universe. For this reason, from a conceptual point of view the
situation does not seem different for identical particles. Although in
quantum mechanics the idea of a particle trajectory is lost in a strict
sense, Ehrenfest's theorem nevertheless can provide us with the notion
of particle trajectories even if the wave packets of the particles are
overlapping. Therefore, there does not seem to exist any a priori
objection against describing, also in quantum mechanics, identical
particles as indexed particles, even if they are thought to be obser-
vationally indistinguishable. As to conceptual distinguishability, classi-
cal and quantum mechanics can be treated on a par.

According to Hestenes (1970), there is also no diflerence berween
classical and quantum mechanics with respect to obseruational dis-
tinguishability. oD hinges on the experimental possibility of observing
the particle label. we completely agree with Hestenes that this is a
question that (a) can be decided only in an operational way, and (b) is
independent of whether the context is classical or quantum mechanics.
As a matter of fact, if we consider a volume of a gas of identical
particles (as in the context of the Gibbs paradox), then also classically
we have no experimental means of distinguishing the particles in the
gas. On the other hand, if the particles are far apart, the particles, both
classically and quantum mechanically, can be distinguished by marking
the region each particle is in (Schiff, 1955; Mirman,1973).

It would seem that in the quantum mechanical case the above-
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mentioned way to distinguish the particles would be frustrated by the
(anti)symmetry of the wave function. However, the question is whether
this objection provides an argument against distinguishability, or rather
against the application of AS under the given circumstances. We will
see in section 5 that certain quantum physical SIP's are described more
accurately by a non-AS state than by an AS state.

In our opinion, Hestenes correctly views AS and ID as physically

unrelated. AS has no other meaning than the equality

(3 )  lV (P (x1 ,  .  .  . ,  x ^ ) ) l ' :  lV ( r , ,  . . . ,  x ^ ) l t ,

stating that the probability of finding the particles 7, . . . , n at positions

x7,. . ., x, equals the probability of finding the particles in a configura-
tion in which the particles have been permuted. This equality has
nothing to do with "a physical exchange of particles", which sometimes
is attributed in a more or less pictorial way to an "exchange inter-
action", intended to explain the appearance of "exchange terms" in the
energy eigenvalues. Such a physical exchange would contradict the
idea of inertia underlying conceptual distinguishability, which is always
presupposed here. AS, as expressed by (3), reveals a physical
equivalence of the particles, which should be viewed in our opinion, as
a consequence of the way the (anti)symmetric state V(xr, . . . , x) has
been prepared (de Muynck, 1975). Far from being a consequence of ID
it seems that the equality (3) can be put to a direct experimental test
only if the particles are observationally distinguishable. For instance,
consider  an e lect ron scat ter ing exper iment ,  the e lect rons stemming
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Fig. 1. Electron scattering experiment.
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from two electron guns, A and B (cf . figure 1). If we give the electron,
generated by A(B), the index 1(2), then observational distinguishability
is necessary in order to determine whether electron 1 or electron 2 is
detected by detector C.

4 .  o p , s c n . r p r I o N S  o F  S I p ' s  I N  c L A S S I C A L  A N D

Q U A N T U M  M E C H A N I C S

When identical particles are considered to be indistinguishable in
literature, this is generally intended to refer to obseruqtional indis-
tinguishability. Observations being described in quantum mechanics by
quantum mechanical observables (self-adjoint operators), observa-
tional (in)distinguishability of identical particles amounts to the ques-
tion of which quantum mechanical observables are physically relevant,
that is, for which observables a measurement procedure can be
conceived. For instance, the position observable r; of the ith particle
can have only physical relevance if our measuring apparatus can
somehow recognize the particle index. Since for identical particles this
does not seem to have a direct operational meaning, observables like x;
are often denied physical relevance. Only those observables which are
invariant under a permutation of the particle indices (symmetrical
observables) are then thought to have physical relevance.

Strictly speaking, this whole reasoning should be applied also in
classical mechanics, at least in those situations where it is practically
impossible to distinguish the particles observationally (as for instance in
a classical statistical mechanical description of a volume of gas). This
has been done already by Gibbs (1902) who replaced a description in
terms of so-called specific phases (f-space: \Qr, pr, ez, pz, . . . , q^, p^))
by one using generic phases (pr-space: (q, p)), the latter one ignoring
particle indices. The two descriptions give the same results for the
macroscopic observables of statistical mechanics if states, differing in
the f-space description only by a permutation of the particles, are
identified, and associated with one and the same state on p-space.

An analogous situation obtains in quantum mechanics. Here, second
quantization (quantum field theory) provides us with a description of
identical particles which, for symmetrical observables, is equivalent to
the elementary wave function description (Robertson, 1973; Green-
berg and Raboy, 1982). As in the p-space description, in second
quantization the particles do not have indices. This makes these
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theories extremely suitable for the description of systems of obser-

vationally indistinguishable particles. However, this does not imply,

conversely, that particles described by second quantization theories are

necessarily observationally indistinguishable. Second quantization can

describe a system of particles that are far apart. When two identical

particles cross a bubble chamber simultaneously without coll iding, they

produce two completely separated tracks, by which the particles can be

distinguished observationally. Admittedly, this method of distinguish-

ing the particles observationally is less direct than e.g., distinguishing a

red and a white billiard ball by means of their color. It does not rule out

the theoretical possibility that the particles exchange their places while

following their tracks, without in any way disturbing these tracks. This

possibility, however, would not only impair observational dis-

tinguishability but also conceptual distinguishability" Although, from a

strictly empiricist point of view, this can hardly be appreciated as a

counterargument, we are prepared to take it seriously for reasons

discussed in the preceding sections. As a matter of fact, denying the

possibitity of conceptual distinguishability in quantum field theories

would signify a fundamental break with the mechanistic world view that

manifests itself in the wave function formulation of quantum mechanics

through the use of particle indices.
As the bubble chamber experiment shows, it is possible to obtain

experimental information on the properties of the indiuidual particles,

even if these particles are parts of an SIP. Such inlormetion can not be

described by the second quantization formalism since this formalism

contains only counterparts for those observables that are symmetric

under permutation of the particle indices (Robertson, 1973; Greenberg

and Raboy, 19S2). Thus, there exists a field operator corresponding to

the "total position operator" (Mathews and Esrick, 1980) Itr xr.

However. in the unindexed formalism we have no field operator

corresponding to xi. Such operators simply have no meaning in

quantum field theory. Second quantization describes only those obser-

vations in which the particle indices are ignored. Distinguishing iden-

tical particles observationally requires labeling of the particles. For this

reason OD can not be dealt with by the second quantization formalism.

One could say that as far as this formalism is concerned, the particles

are observationally indistinguishable. Because of the equivalence with

the wave function formalism, second quantization is not incompatible

with CD. Contrary to the latter formalism, CD is manifest in the
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former. It is precisely for this reason that the wave function formalism
offers the possibility to handle oD. In this respect it is a more powerful
formalism than second quantization.

5 .  R s  a N o  o r o

It should be noticed here that also the indexed theory would not be of
much help in distinguishing the particles observationally if the states of
the system would be restricted to states obeying AS, since in that case

( 4 )  ( x r ) a s : . . . : ( x i ) a s  ( x , ) e , r ,

or, more generally

(5)  (A)or :  (PTAP)AS

tor any operator A. This trivially follows from (2). For our electron
scattering experiment (figure 1) the equality (4) expresses the equal
probabilities for particles I and 2 to be in either of the two outgoing
beams. From (4) and (5) we see that in AS stares the particles are
observationally indistinguishable. Evidently in such states the particles
are mixed (Hestenes, 1970) so thoroughly that, as in the mixing of two
volumes of a gas, the individual particles become completely
equivalent, and each particle has equal probability to be found in those
places which are allowed by the preparation procedure. we can express
this in another way by saying (de Muynck,l9i5) that the particles in AS
states are correlated particles, the correlation being established by the
preparation procedure.

By the equality (5) it is shown that

(6)  AS+ QtP.

So, if we insist on the possibility of oD, we will have to consider srates
that are not AS. Since, however, all experimental evidence seems to be
consistent with AS, it might be questioned whether there is any point in
pondering over observational distinguishability of identical pirticles.
Perhaps we should content ourselves with the restriction of obser-
vations to the class of symmetrical observables.

As indicated before, we feel that such a restriction would not do
justice to the possibility of giving a more detailed description of a
system of identical particles in those situations where the preparation
procedure prevents the establishment of the correlations described by
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Fig. 2. The Gibbs problem.

AS. Such situations are obtained, for instance, if the system consists of

two subsystems which are prepared by independent preparation pro-
cedures, as, in the case of the Gibbs paradox, in the initial state before
the diaphragm has been removed (figure 2), or in case the electron guns
of figure t have been placed in such positions that the electrons will not
interact (figure 3). Admittedly it is possible to describe these situations
also by means of (anti)symmetrized wave functions. This, however, has
the consequence that the two physically distinct states of figure 2 (the

Fig. 3. Electron nonscattering experiment.
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initial and final state) are described by the same wave function. This
does not lead to inconsistencies as far as symmetrical observables are
concerned, since the expectation values of symmetrical observables

f (xt, . .. , x,) in the totally (anti)symmetrized state AS coincide with the
expectation values of the product state ASt O ASrI, as long as the states
of the subsystems I and lI do not overlap. That is,

( .7)  ( / (xr ,  .  .  .  ,  r , ) ) .q .s :  ( . f  (x ' ,  .  .  .  ,  .x , ) )a5r6as,r

if

( 8 )  f  ( * t , . . . , x , , ) :  f  ( P ( x r , . . . ,  r " ) )

is a symmetrical observable of the total system.
Notwithstanding the equivalence of both descriptions in this respect,

it is felt that a wave function which is a product of the two wave
functions of the subsystems would give a truer description of the initial
state in both cases of figures 2 and 3. As a matter of f act, whereas in the
AS state the expectation value (x;) equals the expectation value of the
center of rnass of the whole system, in case of a product function it
represents the position of the center of mass of the subsystem to which
the ith particle belongs. Evidently, the AS state does not yield the
correct value of (x;).

If the subsystems have not been in close contact with each other,
nothing seems to impair the possrbility of distinguishing the subsystems
observationally by the positions of their centers of mass. This possibility
even occurs in the initial state of the scattering experiment of figure 1,
as long as the particles have not reached the scattering region. As is
well known (e.g., Goldberger and Watson, 1964), it is not necessary to
ant isymmetr ize the in i t ia l  s tate in  calculat ing scat ter ing cross sect ions.
if only the final state is AS. There even are situations where it is not at
all necessary to antisymmetrize (Goldberger and Watson,1964, p. 164).
These situations occur if the exchange contribution to the scattering
matrix is negligible, which wil l generally be the case if the particles
remain far apart. As discussed above, this coincides with those situa-
tions which are unfavorable for the particies to get correlated. This
justifies the use of product wave functions also from our point of view
(de Muynck, 197-5): in order to get correlated, the particles should be
allowed to interact.
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6 .  o I D  A N D  C A U S A L I T Y

Whereas the arguments, given here, indicate the possibility of treating

pre-interaction states as uncorrelated, and therefore as non-AS,

without violating agreement with experimental data, by Mirman (1973)

still another argument is supplied against total (anti)symmetrization of

the wave function of the whole system as long as the wave functions of

the subsystems do not yet overlap. Since AS expresses a correlation

between the particles, the use of AS-functions would imply here a

correlation between particles that never had a chance to interact. This,

however, is felt as a contradiction. There exist two ways by means of

which it is possible to lift this contradiction, (a) supposing the existence
o{ an exchange interaction which establishes the correlation notwith-

standing the absence of direct interaction, (b) the choice of a non-AS

state as the pre-interaction state. Mirman chooses the second alter-

native, because the first alternative would violate causality: particle i

would have a chance to be found in a region which it cannot reach,

unless with a velocity exceeding the velocity of propagation of the

interaction (which, supposedly, is the velocity of light).
Of course, the causality violation which is implied by AS can have

observable consequences only if the particles are observationally

distinguishable. As we have seen above, however, this is precisely the

case if the systems have been created far apart! So we have to take
Mirman's argument seriously, even if we are in a position to circumvent

this causality problem by sticking to the "causal" formalism of second
quantization. As discussed in section 4, this formalism gives a less

detailed description of the system than the wave function formalism

does. The equality (4), which has a clear meaning in this latter

formalism, expresses a violation of causality if the particles, after their
preparation, have not had enough time to become correlated in an AS

state. If we are prepared to exploit the excess possibilities which are

offered by the wave function formalism over second quantization, it is

already the requirement of causality which forces us to describe the
pre-interaction state as a product state of the wave functions of the

individual particles. It should be noted that, although such product

states have no counterparts in second quantization, this does not

engender acausality for the second quantization formalism. This,

however, is entirely due to the restriction of the class of observations
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which this formalism describes: symmetrical observables cannot dis-
tinguish a product state from the AS-state which is formed from it by
means of  (ant i )symmetr izat ion.

We would like to stress here that, in our opinion, the impossibility of
obtaining a post-interaction state which is AS, if the state evolution is
described by a Schrodinger equation with a symmetric Hamiltonian
operator, is not a counterargument against the existence of a non-AS
pre-interaction state. Contrary to Mirman (1913), who maintains that
"the physical process in which distinguishabitity is destroyed, [...]
should be understandable (and understood) within quantum
mechanics", we believe that here a limitation is revealed which also the
wave function formalism of quantum mechanics is subject to: quantum
mechanics can not describe the process of correlation which takes place
when the wave functietns of the particles start to overlap. In the case of
the Gibbs paradox (figure 2) this process of correlation does not seem
different from the diffusion process that leads to the final equilibrium
state of the gas. The problem of the reduction of such diffusion
processes to reversible theories like classical or quantum mechanics,
which is largely unsolved up to now, seems to be quite analogous to the
problem of explaining the mechanism by which the wave function is
antisymmetrized. Continuing this analogy, quantum mechanics, l ike
thermodynamics, then, describes only states in which the particles have
come to a certain equilibrium expressed by AS. A description of the
correlation process leading, for SIP's, to AS, would have to await the
conception of a theory intended to describe the microworld at a
sub-quantum level. By Lyuboshitz and Podgoretskii ( 1969, 1971) it was
shown that an analogous correlation mechanism for nonidentical parti-
cles does not influence the wave function.

/ .  K A P L A N ' S  D E R I V A T I O N  O F  A S  F R O M  I D

In the remainder of this paper we will be interested in attempts to derive
the converse of (6): OID - AS. One, by now trivial remark, is that this
implication does not follow from the properties of the second quan-
tization formalism itself. Although this formalism, as discussed above,
corresponds to OID, it does not imply AS. As was demonstrated by
Green (19-53), an unindexed formalism can be conceived for other
statistics than the statistics of bosons or fermions. viz.. the so-called
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parastatistics. So the mere ignorance of particle indices does not
commit us to AS.

It is claimed by Kaplan (1976) that a derivation of AS from ID is
possible. we will give a short evaluation of this derivation in the light of
the distinction made by us between OID and CID. Since Kaplan uses
the indexed formalism, we may conclude that he presupposes CD. So,
oID should be meant if he insists on the indistinguishability of identical
particles. This restricts the physically relevant observables to the class
of observables that are symmetric under permutation of the particle
indices.

Kaplan's derivation is based on the assumption that one-particle
operators l ike l(x;) represent directly observable properties. AS fol-
lows, if, analogous to (a), it is required that

:  ( / (x")) .

Equalit ies (9) are conceived by Kaplan as "the mathematical for-
mulation of the indistingii ishabil itv principle".

We do not challenge the derivabil ity ci AS from (9). in our opinion,
however, it is the assumption (9) itself. which cannot he maintained.
Either the particles are considered to be observationally indistinguish-
able, in which case the operators l i.r i) have no physical relevance. Or
the particles are considered to be observationally distinguishable. Then.
nonsymmetrical operators l ike /(xr) may have physical relevance under
certain circumstances. As discussed in section -5, however, these
circumstances are obtained when the preparation of the system allows a
description by means of a non-,,\S product state, which violates equality
(9). Therefore, whenever the operators /(_rc;) have phvsical relevance,
there is no a priori reason to require the equality of their expectation
values. If the equality (9) seems to be a general feature of SIp's, this is
merely so because the experimentai situations to which quantum
mechanics is applied, mostly correspond to AS-states describing cor-
related particies. This fact of experience, however, is not a necessary
law, and actually has its exceptions. Therefore, the equality (9) should
not be required as a necessary requirement for SIp's.

8 .  e e u r v a L E N T  o B S E R V A R L E S  A N D  E e r J r v A L E N . r .  s r A f . E S

In order to be able to discuss a derivation of AS given by Sarry (Igi.g),
we will first write down sdme definitions which in our opinion give a



4 9 0  w r L l E M  M .  D E  M U Y N C K  A N D  G I D I  P .  v A N  L I E M P D

good illustration of Sarry's underlying assumptions. Consider a Hilbert
space (state space) '7(.which can be part of a larger Hilbert space, and a
set of observables .?, (self-adjoint operators on 7{. For instance, in a
two-particle system 7( can be 7h@ 76, QC:Q 7$)5 or (7h@ 76)o,
where 7(i is a state space of an individual particle and S or A indicate
(anti)symmetrization of the wave functions.

DEFINITION I.  (A :  B):
The observables A and B (elements of fl are equivalent relative to

zqAYg i f

(10)  ( \P lAlq ' ) : (q , lB l { ' )  Yyvs.zc.

The equality (10) does not necessarily entail A : B: e.g., relative to
(7&@7h)s we have (x1) :Qz) .  so xt t r 'Qf t ) ' r r ,  but  (xr )  does not
necessarily equal (x2) relative to 7&& 7(2, so xr* xz.

DEFrNrr roN l .  ( lo ) { l v ) } :
The states l(il) and itP) of 7( are equivalent relative to 9(l0f l\f)) if

( 11 )  ( s / lA l q / ) : (O lA lO)  Y  o . s .

An  examp le :  i f  ' / ( :  / ( r@76  and  ' 5 : \ f ( . a , x ) l f ( x t , x ) :

/ (xz,  xr ) ,  /  real )  then V(x1,  x2)  is  equivalent  to  V(xz,  - r r )  re lat ive
to 9.

DEFINITION 3. (separation):
The set of observables I is said to separate the states of. 7( if.lQ) e %,

lvl e %, l o)e l\P) implies

(12) l@): et" l tF),  a a real constant.

We can illustrate this definition again for a two-particle system, where
e.g., the set of all (bounded) operators A(1,2) which are symmetrical
under permutation of the indices, separates the states of (7h@ 1h)t
and ('/Q8 76)o but does not separate the states of Wr@ 76.

In order to connect these mathematical definitions with physics, we
introduce the following definitions.

DEFINITION 4. (physically possible states):
A physically possible state of a system is a state which is not excluded by
any observational evidence, as a description of the system.
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We will call the (Hilbert) space which has the set of physically possible
states as unit sphere, ffi6.

DEFINITION 5. (physically relevant observables):
An operator A e I corresponds to a physically relevant observable if a
measuring procedure can be conceived to measure that observable.

The set of physically relevant observables will be indicated by gen.

We will not be bothered by the inherent vagueness of definitions 4
and 5. Observational evidence is changing continually, as the class of
physically relevant observables is growing and measurements of these
observables are performed. As we saw before, which observables are
physically relevant, can be a matter of dispute. This does not disturb us.
however, because the present analysis is not based on which choice is
made for the class of physicaily relevant observabies. In the following
our argumentation will derive from the assumption that it is necessary
to remain faithful to the choice. once this has been made.

We will assume that projection operators of subspaces of 7(pn are
physically relevant observables. This seems reasonable because it al-
lows us to check in which physically possible state the system is. Then, if

(13 )  seh :  \A ' l  A , '  :  I  |  ' ) 01+  t l jX '  l ) .  gon

where {1,)} is a complete orthonormal set of vectors in 7(pt, and A is a
complex constant, 9or, is a set of physically relevant observables.

In case of a two-particle system, this set gonmay for instance a priori
have the following appearances:

i l  7 (pn :  7 ( ,@?(2 :9pn :

{4*t^" | 4rot^" : I lOr (xr)@r (xz)XO_(xr )O" (rr) I

+ i lo-( xr ro"(xz)Xor (x1)(D1(xr)l) ;

i t  1Qn: (K'& %g)s: 9pn:

{A\'^" lA! '-": I lot i)("h, xz))(<Df}(xr, xz)l

+ r lol i l (xr. x.)Xoli)(x,. xr) l)

where {O'l i)(xr, x:)i is a complete orthonormal set rrf symmetrical wave
functions.

Using clefinit ions 2 and 3 it can be demonstrated easily that such a
set 9o6 separates lor..
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9 .  o r s c u s s r o N  t l F  s A R R y ' s  D E R I I z A T I o N  o F  A S

We now examine Sarrv's definition 0979) of a svstem of identical

particles.

DEFINITION 6. SIP (Sarry):
If the mean value of the operator A of any observable quantity of a

system of particles remains unchanged for arbitrary permutations of the
indices of the quantities x, in the function ltP) over which this mean
value is calculated, then the particles of this system should be regarded
as identical (indistinguishable).

It is consistent with Sarry's following derivation if we interpret this
according to

(14) Vo.*"n(OlAlO) :  (VlAlV),

l.P) : P lv), lo), lv) e 7Qt.

T'aking into account the unitarity, Pr: P r, of the permutation opera-
tors, and using definition 1 we can conclude that Sarry's definition of an
SIP amounts to

(15)  V aoe+,nP 
t  AP*!  A.

From this condition we would like to extract information about P. But
first, if we take a look at definition L again, we can show that, by virtue
of the superposition principle and the arbitrariness of lV) in the
definition, the equality (10) for 7C: 7$n is equivalent to

ful eln) : (ml Bln) V1_;,1,y.r_n.

Therefore, Sarry's definition (14) of an SIP, which is the same as

vo.," , , , , (o lAP lv) :  (o lPA l \P)
(assuming that both ltP) and PIV) are elements of ZQt), can be
interpreted according to definition 1 as

%on

(16) Y a.so,nAP -:- PA.

Using matrix-representations of P and A, this can be written as

vo...""n I A^1pp:l p^,A,^
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A^j :  (mlAl  j ) ,  P^ i :  (mlPl j ) ,  I  m>, l i>  e lements of  a  com-
plete orthonormal set of vectors in ZQn.

Substituting the set 9pr, which was introduced in (13), we find that

(.17) Pi1 : €'"6i1 or e* l .

At this point Sarry concludes that, because of (17), TQtcontains either
fully symmetrical or fully antisymmetrical wave functions, that is ZQn
equals Zft or 7(a. This is so, because (17) implies one-dimensionality of
the representations on TQnof the permutation group, which commits us
to either the symmetrical or the antisymmetrical representation of this
group.

Our critique of the present derivation of AS rather follows the same
line as our objection against Kaplan's derivation (section 7). Again, we
do not challenge the derivation as it stands, but we will demonstrate
that also here an unwarranted assumption is made, analogous to the
equality (9). To this end we direct our attention to the Hilbert space of
physical state functions Z(pn. If we take 7$n to be equal to 7(e or 7(s,
then, with $n defined by (13), we have

(  l 8 )  P - t  A i iP :  A i i  Va , , . , *n .

The equality (18) is trivially fulfilled since for this choice of Z(pt,
because of the symmetry properties of the states li) and l1;, the
operators Aii of. 9pn are all symmetrical under a permutation of the
particles. Also (17) is trivially fulfilled.

Making this choice f.or 7Q6, however, would clearly be question-
begging since, then, we are ossuming what has to be proven. The
question is, then, whether in Sarry's derivation of AS the space gfor, is
restricted to Zft or 7(e in a legitimate way, without this restriction being
assumed beforehand.

If this restriction of 7Qt is dropped, the operators Ai, of $n are no
longer limited to the symmetrical ones obeying (18), and the derivation
of (17) can now be performed in the way outlined by Sarry. However, if
nonsymmetrical observables are thought to be physically relevant, the
situation is quite analogous to the one we met in section 7: we have no
reason to require the physical equivalence (15) if A is such a nonsym-
metrical observable. Since (17) is a consequence of (15), this blocks the
derivation of AS.

ffon

P -
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We close this section by noting that, although

(19) not: p lAiip*t 'A,,, it Q)fl(t is the tensor product of all
single particle Hilbert spaces of the particles contained in
the SIP, and A'i are the operators defined by (13) with
respect ro 7(6-- @t7(, (since this would be tantamount to
(  1 8 ) ) ,

for these nonsymmetrical operators the equivalences
?cs .. Ko

(20)  P- 'A ' . tP -  At t .  P- 'A ' , rP -  A"

obtain. The relations (20) are to be compared to (5). They express the
indistinguishability of the identical particles if the state is an AS-state,
that is, the implication (6). A proof of the converse of this implication,
however, requires the stronger form of equivalence as negated in (19).

1 0 .  c o N c r - u s r o N S

In the quantum mechanical literature we can find many different views
with respect to the relation between the (anti)symmetrization postulate
and the alleged indistinguishability of identical particles, ranging from
complete equivalence to complete independence of the two notions.
Such a situation calls for a closer analysis of the concepts which are
involved. In doing so we are lead to the introduction of two different
notions of distinguishability, viz., conceptual and observational dis-
tinguishability. We come to the conclusion that only the second kind is
involved when identical particles are thought not to be distinguishable.
the first kind being presupposed both in classical and quantum
mechanics.

Observational (in)distinguishability has to do with the class of
observables that can be measured on the system of identical particles.
Observables that are invariant under a permutation of the particle
variables cannot distinguish between the particles. For this reason the
second quantization formalism can only describe particles that are
thought to be indistinguishable. However, the wave function formalism
of quantum mechanics allows also observables that are not invariant
under permutations. Although in an (anti)symmetrical state the parti-
cles are indistinsuishable also with respect to such observables, there
are physical situo ,ons in which a system of identical particles should be
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described by a state that is not (anti)symmetrical. In such states
nonsymmetrical observables can be used to distinguish the particles.

Although it turns out that (anti)symmetry of the wave functions
entails observational indistinguishability, the converse is not true. Two
attempts to derive (anti)symmetry from indistinguishability are
analyzed and shown to be defective: either we may consider only
symmetrical observables as physically relevant, in which case a per-
mutation does not entail any requirement to be obeyed by the wave
function; or, also nonsymmetrical observables are taken into account,
in which case. however, we accept the possibility of observational
distinguishability of the particles. These two positions should not be
mixed up.

The generality of our arguments against derivability of AS from ID
seems to warrant the claim that AS and ID have quite different physical
origins. Whereas ID refers to the possibilities oI obserttation, AS is
related to the preparation of the s,vstern of identical particles. It is
tempting to view such a preparation process as analogous to the
diffusion process by which two volumes of a gas are mixed (de Muynck,
1975). An interpretation of the quantum mechanical state as an
equilibrium state of some dilTusion process, which forces itself on us as
an explanation of (anti)symmetry of the wave function, might be
instrumental in explaining also other outstanding problems that pose
itself in the foundation of quantum mechanics, as for instance the
measurement problem and the Einstein-Podolsky-Rosen paradox.
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